Internal
problem
ID
[1401]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
7.6,
Complex
Eigenvalues.
page
417
Problem
number
:
1
Date
solved
:
Saturday, March 29, 2025 at 10:54:16 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 3*x__1(t)-2*x__2(t), diff(x__2(t),t) = 4*x__1(t)-x__2(t)]; dsolve(ode);
ode={D[ x1[t],t]==3*x1[t]-2*x2[t],D[ x2[t],t]==4*x1[t]-1*x2[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-3*x__1(t) + 2*x__2(t) + Derivative(x__1(t), t),0),Eq(-4*x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)