10.9.8 problem 8

Internal problem ID [1310]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number : 8
Date solved : Saturday, March 29, 2025 at 10:51:53 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=16*diff(diff(y(x),x),x)+24*diff(y(x),x)+9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {3 x}{4}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 20
ode=16*D[y[x],{x,2}]+24*D[y[x],x]+9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x/4} (c_2 x+c_1) \]
Sympy. Time used: 0.151 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + 24*Derivative(y(x), x) + 16*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- \frac {3 x}{4}} \]