10.8.28 problem 42

Internal problem ID [1300]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation , page 164
Problem number : 42
Date solved : Saturday, March 29, 2025 at 10:51:38 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=t^2*diff(diff(y(t),t),t)+7*t*diff(y(t),t)+10*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {c_1 \sin \left (\ln \left (t \right )\right )+c_2 \cos \left (\ln \left (t \right )\right )}{t^{3}} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 22
ode=t^2*D[y[t],{t,2}]+7*t*D[y[t],t]+10*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {c_2 \cos (\log (t))+c_1 \sin (\log (t))}{t^3} \]
Sympy. Time used: 0.182 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) + 7*t*Derivative(y(t), t) + 10*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1} \sin {\left (\log {\left (t \right )} \right )} + C_{2} \cos {\left (\log {\left (t \right )} \right )}}{t^{3}} \]