10.7.9 problem 9

Internal problem ID [1257]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number : 9
Date solved : Saturday, March 29, 2025 at 10:50:23 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Maple. Time used: 0.051 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-2*y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x}}{3}-\frac {{\mathrm e}^{-2 x}}{3} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 21
ode=D[y[x],{x,2}]+D[y[x],x]-2*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{3} e^{-2 x} \left (e^{3 x}-1\right ) \]
Sympy. Time used: 0.135 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{x}}{3} - \frac {e^{- 2 x}}{3} \]