10.6.28 problem 28

Internal problem ID [1245]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Miscellaneous problems, end of chapter 2. Page 133
Problem number : 28
Date solved : Saturday, March 29, 2025 at 10:49:55 PM
CAS classification : [_linear]

\begin{align*} 3 t +2 y&=-t y^{\prime } \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=3*t+2*y(t) = -t*diff(y(t),t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = -t +\frac {c_1}{t^{2}} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 15
ode=3*t+2*y[t] == -t*D[y[t],t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -t+\frac {c_1}{t^2} \]
Sympy. Time used: 0.159 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), t) + 3*t + 2*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1}}{t^{2}} - t \]