Internal
problem
ID
[1186]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Section
2.5.
Page
88
Problem
number
:
6
Date
solved
:
Saturday, March 29, 2025 at 10:45:07 PM
CAS
classification
:
[_quadrature]
ode:=diff(y(t),t) = -2*arctan(y(t))/(1+y(t)^2); dsolve(ode,y(t), singsol=all);
ode=D[y[t],t] == -2*ArcTan[y[t]]/(1+y[t]^2); ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(Derivative(y(t), t) + 2*atan(y(t))/(y(t)**2 + 1),0) ics = {} dsolve(ode,func=y(t),ics=ics)