10.3.5 problem 5

Internal problem ID [1170]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.4. Page 76
Problem number : 5
Date solved : Saturday, March 29, 2025 at 10:44:19 PM
CAS classification : [_linear]

\begin{align*} 2 t y+\left (-t^{2}+4\right ) y^{\prime }&=3 t^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=-3 \end{align*}

Maple. Time used: 0.060 (sec). Leaf size: 62
ode:=2*t*y(t)+(-t^2+4)*diff(y(t),t) = 3*t^2; 
ic:=y(1) = -3; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {\left (3 t^{2}-12\right ) \ln \left (t +2\right )}{8}+\frac {3 i \pi \,t^{2}}{8}-\frac {3 \ln \left (3\right ) t^{2}}{8}-\frac {3 \ln \left (t -2\right ) t^{2}}{8}-\frac {3 i \pi }{2}+\frac {3 t^{2}}{2}+\frac {3 t}{2}+\frac {3 \ln \left (3\right )}{2}+\frac {3 \ln \left (t -2\right )}{2}-6 \]
Mathematica. Time used: 0.042 (sec). Leaf size: 52
ode=2*t*y[t]+(-t^2+4)*D[y[t],t] == 3*t^2; 
ic=y[1]==-3; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to -\frac {3}{8} \left (-4 t^2+t^2 \log (3)+\left (t^2-4\right ) \log (2-t)-\left (t^2-4\right ) \log (t+2)-4 t+16-4 \log (3)\right ) \]
Sympy. Time used: 0.439 (sec). Leaf size: 83
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-3*t**2 + 2*t*y(t) + (4 - t**2)*Derivative(y(t), t),0) 
ics = {y(1): -3} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {3 t^{2} \log {\left (t - 2 \right )}}{8} + \frac {3 t^{2} \log {\left (t + 2 \right )}}{8} + t^{2} \left (- \frac {3 \log {\left (3 \right )}}{8} + \frac {3}{2} + \frac {3 i \pi }{8}\right ) + \frac {3 t}{2} + \frac {3 \log {\left (t - 2 \right )}}{2} - \frac {3 \log {\left (t + 2 \right )}}{2} - 6 + \frac {3 \log {\left (3 \right )}}{2} - \frac {3 i \pi }{2} \]