10.2.32 problem 33

Internal problem ID [1160]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.2. Page 48
Problem number : 33
Date solved : Saturday, March 29, 2025 at 10:43:02 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {4 y-3 x}{2 x -y} \end{align*}

Maple. Time used: 0.176 (sec). Leaf size: 26
ode:=diff(y(x),x) = (4*y(x)-3*x)/(2*x-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (\operatorname {RootOf}\left (x^{4} c_1 \,\textit {\_Z}^{20}-\textit {\_Z}^{4}+4\right )^{4}-3\right ) \]
Mathematica. Time used: 2.989 (sec). Leaf size: 336
ode=D[y[x],x] == (4*y[x]-3*x)/(2*x-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {Root}\left [\text {$\#$1}^5+15 \text {$\#$1}^4 x+90 \text {$\#$1}^3 x^2+270 \text {$\#$1}^2 x^3+\text {$\#$1} \left (405 x^4-e^{4 c_1}\right )+243 x^5+e^{4 c_1} x\&,1\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+15 \text {$\#$1}^4 x+90 \text {$\#$1}^3 x^2+270 \text {$\#$1}^2 x^3+\text {$\#$1} \left (405 x^4-e^{4 c_1}\right )+243 x^5+e^{4 c_1} x\&,2\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+15 \text {$\#$1}^4 x+90 \text {$\#$1}^3 x^2+270 \text {$\#$1}^2 x^3+\text {$\#$1} \left (405 x^4-e^{4 c_1}\right )+243 x^5+e^{4 c_1} x\&,3\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+15 \text {$\#$1}^4 x+90 \text {$\#$1}^3 x^2+270 \text {$\#$1}^2 x^3+\text {$\#$1} \left (405 x^4-e^{4 c_1}\right )+243 x^5+e^{4 c_1} x\&,4\right ] \\ y(x)\to \text {Root}\left [\text {$\#$1}^5+15 \text {$\#$1}^4 x+90 \text {$\#$1}^3 x^2+270 \text {$\#$1}^2 x^3+\text {$\#$1} \left (405 x^4-e^{4 c_1}\right )+243 x^5+e^{4 c_1} x\&,5\right ] \\ \end{align*}
Sympy. Time used: 0.966 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + (3*x - 4*y(x))/(2*x - y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} + \log {\left (\frac {\sqrt [4]{-1 + \frac {y{\left (x \right )}}{x}}}{\left (3 + \frac {y{\left (x \right )}}{x}\right )^{\frac {5}{4}}} \right )} \]