Internal
problem
ID
[1148]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Section
2.2.
Page
48
Problem
number
:
20
Date
solved
:
Saturday, March 29, 2025 at 10:42:18 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=(-x^2+1)^(1/2)*y(x)^2*diff(y(x),x) = arcsin(x); ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(-x^2+1)^(1/2)*y[x]^2*D[y[x],x] == ArcSin[x]; ic=y[0]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(sqrt(1 - x**2)*y(x)**2*Derivative(y(x), x) - asin(x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)