Internal
problem
ID
[1144]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Section
2.2.
Page
48
Problem
number
:
16
Date
solved
:
Saturday, March 29, 2025 at 10:41:26 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = 1/4*x*(x^2+1)/y(x)^3; ic:=y(0) = -1/2*2^(1/2); dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x] == 1/4*x*(x^2+1)/y[x]^3; ic=y[0]==-(1/Sqrt[2]); DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(x**2 + 1)/(4*y(x)**3) + Derivative(y(x), x),0) ics = {y(0): -sqrt(2)/2} dsolve(ode,func=y(x),ics=ics)