10.2.1 problem 1

Internal problem ID [1129]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.2. Page 48
Problem number : 1
Date solved : Saturday, March 29, 2025 at 10:40:41 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {x^{2}}{y} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 33
ode:=diff(y(x),x) = x^2/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {6 x^{3}+9 c_1}}{3} \\ y &= \frac {\sqrt {6 x^{3}+9 c_1}}{3} \\ \end{align*}
Mathematica. Time used: 0.084 (sec). Leaf size: 50
ode=D[y[x],x] == x^2/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {\frac {2}{3}} \sqrt {x^3+3 c_1} \\ y(x)\to \sqrt {\frac {2}{3}} \sqrt {x^3+3 c_1} \\ \end{align*}
Sympy. Time used: 0.258 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {C_{1} + 6 x^{3}}}{3}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} + 6 x^{3}}}{3}\right ] \]