10.1.15 problem 15

Internal problem ID [1112]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Section 2.1. Page 40
Problem number : 15
Date solved : Saturday, March 29, 2025 at 10:39:24 PM
CAS classification : [_linear]

\begin{align*} 2 y+t y^{\prime }&=t^{2}-t +1 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&={\frac {1}{2}} \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 19
ode:=2*y(t)+t*diff(y(t),t) = t^2-t+1; 
ic:=y(1) = 1/2; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {t^{2}}{4}-\frac {t}{3}+\frac {1}{2}+\frac {1}{12 t^{2}} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 22
ode=2*y[t]+t*D[y[t],t] == t^2-t+1; 
ic=y[1]==1/2; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{12} \left (3 t^2+\frac {1}{t^2}-4 t+6\right ) \]
Sympy. Time used: 0.236 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**2 + t*Derivative(y(t), t) + t + 2*y(t) - 1,0) 
ics = {y(1): 1/2} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {t^{2}}{4} - \frac {t}{3} + \frac {1}{2} + \frac {1}{12 t^{2}} \]