Internal
problem
ID
[1096]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Chapter
11
Power
series
methods.
Section
11.2
Power
series
solutions.
Page
624
Problem
number
:
problem
33
Date
solved
:
Saturday, March 29, 2025 at 10:38:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*alpha*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]-2*x*D[y[x],x]+2*\[Alpha]*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") y = Function("y") ode = Eq(2*Alpha*y(x) - 2*x*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)