9.8.26 problem problem 26

Internal problem ID [1091]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 26
Date solved : Saturday, March 29, 2025 at 10:38:39 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{3}+1\right ) y^{\prime \prime }+x^{4} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 15
Order:=6; 
ode:=(x^3+1)*diff(diff(y(x),x),x)+x^4*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 10
ode=(1+x^3)*D[y[x],{x,2}]+x^4*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 x+c_1 \]
Sympy. Time used: 0.805 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*y(x) + (x**3 + 1)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = O\left (1\right ) \]