Internal
problem
ID
[1087]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Chapter
11
Power
series
methods.
Section
11.2
Power
series
solutions.
Page
624
Problem
number
:
problem
22
Date
solved
:
Saturday, March 29, 2025 at 10:38:34 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(x^2+6*x)*diff(diff(y(x),x),x)+(3*x+9)*diff(y(x),x)-3*y(x) = 0; ic:=y(-3) = 1, D(y)(-3) = 0; dsolve([ode,ic],y(x),type='series',x=-3);
ode=(x^2+6*x)*D[y[x],{x,2}]+(3*x+9)*D[y[x],x]-3*y[x]==0; ic={y[-3]==1,Derivative[1][y][-3 ]==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-3,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x + 9)*Derivative(y(x), x) + (x**2 + 6*x)*Derivative(y(x), (x, 2)) - 3*y(x),0) ics = {y(-3): 1, Subs(Derivative(y(x), x), x, -3): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-3,n=6)