Internal
problem
ID
[1084]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Chapter
11
Power
series
methods.
Section
11.2
Power
series
solutions.
Page
624
Problem
number
:
problem
19
Date
solved
:
Saturday, March 29, 2025 at 10:38:30 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(-x^2+2*x)*diff(diff(y(x),x),x)-6*(x-1)*diff(y(x),x)-4*y(x) = 0; ic:=y(1) = 0, D(y)(1) = 1; dsolve([ode,ic],y(x),type='series',x=1);
ode=(2*x-x^2)*D[y[x],{x,2}]-6*(x-1)*D[y[x],x]-4*y[x]==0; ic={y[1]==0,Derivative[1][y][1]==1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((6 - 6*x)*Derivative(y(x), x) + (-x**2 + 2*x)*Derivative(y(x), (x, 2)) - 4*y(x),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=6)