9.8.11 problem problem 11

Internal problem ID [1076]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 11
Date solved : Saturday, March 29, 2025 at 10:38:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 5 y^{\prime \prime }-2 x y^{\prime }+10 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 39
Order:=6; 
ode:=5*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+10*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-x^{2}+\frac {1}{10} x^{4}\right ) y \left (0\right )+\left (\frac {4}{375} x^{5}-\frac {4}{15} x^{3}+x \right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 40
ode=5*D[y[x],{x,2}]-2*x*D[y[x],x]+10*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {4 x^5}{375}-\frac {4 x^3}{15}+x\right )+c_1 \left (\frac {x^4}{10}-x^2+1\right ) \]
Sympy. Time used: 0.753 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + 10*y(x) + 5*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{10} - x^{2} + 1\right ) + C_{1} x \left (1 - \frac {4 x^{2}}{15}\right ) + O\left (x^{6}\right ) \]