9.8.2 problem problem 2

Internal problem ID [1067]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number : problem 2
Date solved : Saturday, March 29, 2025 at 10:38:07 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }+4 x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 39
Order:=6; 
ode:=(x^2+2)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{4} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{3}+\frac {1}{4} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 68
ode=(x^2+2)*D[y[x],{x,2}]+4*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{30}-\frac {x^4}{12}+\frac {x^3}{3}-\frac {x^2}{2}+1\right )+c_2 \left (-\frac {x^5}{15}-\frac {x^4}{12}+\frac {x^3}{2}-x^2+x\right ) \]
Sympy. Time used: 0.718 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*Derivative(y(x), x) + (x**2 + 2)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{4} - \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (1 - \frac {x^{2}}{2}\right ) + O\left (x^{6}\right ) \]