9.7.18 problem problem 18

Internal problem ID [1059]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number : problem 18
Date solved : Saturday, March 29, 2025 at 10:37:55 PM
CAS classification : [_separable]

\begin{align*} x^{3} y^{\prime }&=2 y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple
Order:=6; 
ode:=x^3*diff(y(x),x) = 2*y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 13
ode=x^3*D[y[x],x]==2*y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 e^{-\frac {1}{x^2}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
ValueError : ODE x**3*Derivative(y(x), x) - 2*y(x) does not match hint 1st_power_series