Internal
problem
ID
[1037]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.6,
Multiple
Eigenvalue
Solutions.
Page
451
Problem
number
:
problem
30
Date
solved
:
Saturday, March 29, 2025 at 10:37:25 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 2*x__1(t)+x__2(t)-2*x__3(t)+x__4(t), diff(x__2(t),t) = 3*x__2(t)-5*x__3(t)+3*x__4(t), diff(x__3(t),t) = -13*x__2(t)+22*x__3(t)-12*x__4(t), diff(x__4(t),t) = -27*x__2(t)+45*x__3(t)-25*x__4(t)]; dsolve(ode);
ode={D[ x1[t],t]==2*x1[t]+1*x2[t]-2*x3[t]+1*x4[t],D[ x2[t],t]==0*x1[t]+3*x2[t]-5*x3[t]+3*x4[t],D[ x3[t],t]==0*x1[t]-13*x2[t]+22*x3[t]-12*x4[t],D[ x4[t],t]==0*x1[t]-27*x2[t]+45*x3[t]-25*x4[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(-2*x__1(t) - x__2(t) + 2*x__3(t) - x__4(t) + Derivative(x__1(t), t),0),Eq(-3*x__2(t) + 5*x__3(t) - 3*x__4(t) + Derivative(x__2(t), t),0),Eq(13*x__2(t) - 22*x__3(t) + 12*x__4(t) + Derivative(x__3(t), t),0),Eq(27*x__2(t) - 45*x__3(t) + 25*x__4(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)