Internal
problem
ID
[1016]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.6,
Multiple
Eigenvalue
Solutions.
Page
451
Problem
number
:
problem
9
Date
solved
:
Saturday, March 29, 2025 at 10:36:56 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -19*x__1(t)+12*x__2(t)+84*x__3(t), diff(x__2(t),t) = 5*x__2(t), diff(x__3(t),t) = -8*x__1(t)+4*x__2(t)+33*x__3(t)]; dsolve(ode);
ode={D[ x1[t],t]==-19*x1[t]+12*x2[t]+84*x3[t],D[ x2[t],t]==0*x1[t]+5*x2[t]+0*x3[t],D[ x3[t],t]==-8*x1[t]+4*x2[t]+33*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(19*x__1(t) - 12*x__2(t) - 84*x__3(t) + Derivative(x__1(t), t),0),Eq(-5*x__2(t) + Derivative(x__2(t), t),0),Eq(8*x__1(t) - 4*x__2(t) - 33*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)