83.35.11 problem 11

Internal problem ID [19360]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Misc. Exercise on chapter VII. Page 118
Problem number : 11
Date solved : Monday, March 31, 2025 at 07:10:28 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }&=2 \end{align*}

Maple. Time used: 0.165 (sec). Leaf size: 59
ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x) = 2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\int -\frac {-2 \sqrt {x^{2}-1}\, \ln \left (x +\sqrt {x^{2}-1}\right ) \sqrt {x -1}\, \sqrt {x +1}+c_1 \left (x^{2}-1\right )}{\left (x -1\right )^{{3}/{2}} \left (x +1\right )^{{3}/{2}}}d x +c_2 \]
Mathematica. Time used: 0.018 (sec). Leaf size: 31
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]==2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\frac {1}{4} \left (-2 \log \left (\sqrt {x^2-1}+x\right )+c_1\right ){}^2 \]
Sympy. Time used: 14.795 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \frac {\left (C_{2} + 2 \log {\left (x + \sqrt {x^{2} - 1} \right )}\right )^{2}}{4} \]