Internal
problem
ID
[19292]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VII.
Exact
differential
equations
and
certain
particular
forms
of
equations.
Exercise
VII
(A)
at
page
104
Problem
number
:
17
Date
solved
:
Monday, March 31, 2025 at 07:05:51 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^5*diff(diff(y(x),x),x)+3*x^3*diff(y(x),x)+(3-6*x)*x^2*y(x) = x^4+2*x-5; dsolve(ode,y(x), singsol=all);
ode=x^5*D[y[x],{x,2}]+3*x^3*D[y[x],x]+(3-6*x)*x^2*y[x]==x^4+2*x-5; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**5*Derivative(y(x), (x, 2)) - x**4 + 3*x**3*Derivative(y(x), x) + x**2*(3 - 6*x)*y(x) - 2*x + 5,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3*(-x**2*Derivative(y(x), (x, 2)) + x + 6*y(x)) - 3*x**2*y(x) + 2*x - 5)/(3*x**3) cannot be solved by the factorable group method