Internal
problem
ID
[19267]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients.
Exercise
VI
(C)
at
page
93
Problem
number
:
14
Date
solved
:
Monday, March 31, 2025 at 07:03:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-20*y(x) = (1+x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-20*y[x]==(1+x)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - (x + 1)**2 - 20*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)