83.24.4 problem 4

Internal problem ID [19247]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VI. Homogeneous linear equations with variable coefficients. Exercise VI (A) at page 81
Problem number : 4
Date solved : Monday, March 31, 2025 at 07:03:13 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime }-2 y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=x^2*diff(diff(diff(y(x),x),x),x)-2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \ln \left (x \right )+c_3 \,x^{3} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 22
ode=x^2*D[y[x],{x,3}]-2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x^3}{3}+c_1 \log (x)+c_3 \]
Sympy. Time used: 0.133 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 3)) - 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{3} + C_{3} \log {\left (x \right )} \]