Internal
problem
ID
[19235]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
V.
Singular
solutions.
Exercise
V
at
page
76
Problem
number
:
25
Date
solved
:
Monday, March 31, 2025 at 07:00:26 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=(a^2-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+b^2-y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a^2-x^2)*D[y[x],x]^2+2*x*y[x]*D[y[x],x]+b^2-y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b**2 + 2*x*y(x)*Derivative(y(x), x) + (a**2 - x**2)*Derivative(y(x), x)**2 - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out