83.22.23 problem 23

Internal problem ID [19206]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (E) at page 63
Problem number : 23
Date solved : Monday, March 31, 2025 at 06:56:42 PM
CAS classification : [_exact, _rational]

\begin{align*} \left (1+6 y^{2}-3 x^{2} y\right ) y^{\prime }&=3 x y^{2}-x^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 769
ode:=(1+6*y(x)^2-3*x^2*y(x))*diff(y(x),x) = 3*x*y(x)^2-x^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 7.927 (sec). Leaf size: 570
ode=(1+6*y[x]^2-3*x^2*y[x])*D[y[x],x]==3*x*y[x]^2-x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x^2}{4}-\frac {\sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}}{6 \sqrt [3]{2}}+\frac {6-\frac {9 x^4}{4}}{3\ 2^{2/3} \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}} \\ y(x)\to \frac {x^2}{4}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}}{12 \sqrt [3]{2}}-\frac {\left (1+i \sqrt {3}\right ) \left (6-\frac {9 x^4}{4}\right )}{6\ 2^{2/3} \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}} \\ y(x)\to \frac {x^2}{4}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}}{12 \sqrt [3]{2}}-\frac {\left (1-i \sqrt {3}\right ) \left (6-\frac {9 x^4}{4}\right )}{6\ 2^{2/3} \sqrt [3]{-\frac {27 x^6}{4}+36 x^3+27 x^2+\sqrt {4 \left (6-\frac {9 x^4}{4}\right )^3+\left (-\frac {27 x^6}{4}+36 x^3+27 x^2+108 c_1\right ){}^2}+108 c_1}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 - 3*x*y(x)**2 + (-3*x**2*y(x) + 6*y(x)**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out