83.19.2 problem 2

Internal problem ID [19159]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (B) at page 55
Problem number : 2
Date solved : Monday, March 31, 2025 at 06:50:21 PM
CAS classification : [_dAlembert]

\begin{align*} {y^{\prime }}^{2}-y^{\prime } y+x&=0 \end{align*}

Maple. Time used: 0.042 (sec). Leaf size: 300
ode:=diff(y(x),x)^2-y(x)*diff(y(x),x)+x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {\left (-y+\sqrt {y^{2}-4 x}\right ) c_1}{\sqrt {2 y-2 \sqrt {y^{2}-4 x}+4}\, \sqrt {2 y-2 \sqrt {y^{2}-4 x}-4}}+x +\frac {\left (-y+\sqrt {y^{2}-4 x}\right ) \left (-\ln \left (2\right )+\ln \left (y-\sqrt {y^{2}-4 x}+\sqrt {2 y^{2}-2 y \sqrt {y^{2}-4 x}-4 x -4}\right )\right )}{\sqrt {2 y^{2}-2 y \sqrt {y^{2}-4 x}-4 x -4}} &= 0 \\ \frac {\left (y+\sqrt {y^{2}-4 x}\right ) c_1}{\sqrt {2 y+2 \sqrt {y^{2}-4 x}+4}\, \sqrt {2 y+2 \sqrt {y^{2}-4 x}-4}}+x -\frac {\left (y+\sqrt {y^{2}-4 x}\right ) \left (-\ln \left (2\right )+\ln \left (y+\sqrt {y^{2}-4 x}+\sqrt {2 y^{2}+2 y \sqrt {y^{2}-4 x}-4 x -4}\right )\right )}{\sqrt {2 y^{2}+2 y \sqrt {y^{2}-4 x}-4 x -4}} &= 0 \\ \end{align*}
Mathematica. Time used: 0.633 (sec). Leaf size: 58
ode=D[y[x],x]^2-D[y[x],x]*y[x]+x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=-\frac {K[1] \arcsin (K[1])}{\sqrt {1-K[1]^2}}+\frac {c_1 K[1]}{\sqrt {1-K[1]^2}},y(x)=\frac {x}{K[1]}+K[1]\right \},\{y(x),K[1]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - y(x)*Derivative(y(x), x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-4*x + y(x)**2)/2 - y(x)/2 + Derivative(y(x), x) cannot be solved by the factorable group method