Internal
problem
ID
[19133]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
III.
Ordinary
linear
differential
equations
with
constant
coefficients.
Misc.
Examples
on
chapter
III
at
page
50
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 06:49:22 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x)-2*diff(diff(diff(diff(diff(y(x),x),x),x),x),x)+3*diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = sin(1/2*x)^2+exp(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,6}]-2*D[y[x],{x,5}]+3*D[y[x],{x,4}]-4*D[y[x],{x,3}]+3*D[y[x],{x,2}]-2*D[y[x],x]+y[x]==Sin[x/2]^2+Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - exp(x) - sin(x/2)**2 - 2*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + 3*Derivative(y(x), (x, 4)) - 2*Derivative(y(x), (x, 5)) + Derivative(y(x), (x, 6)),0) ics = {} dsolve(ode,func=y(x),ics=ics)