83.17.2 problem 2

Internal problem ID [19127]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Misc. Examples on chapter III at page 50
Problem number : 2
Date solved : Monday, March 31, 2025 at 06:49:07 PM
CAS classification : [[_high_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 46
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(y(x),x),x)+y(x) = x^2*cos(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-4 x^{4}+192 c_3 x +36 x^{2}+192 c_1 -21\right ) \cos \left (x \right )}{192}+\frac {\sin \left (x \right ) \left (x^{3}+\left (12 c_4 -3\right ) x +12 c_2 \right )}{12} \]
Mathematica. Time used: 0.084 (sec). Leaf size: 56
ode=D[y[x],{x,4}]+2*D[y[x],{x,2}]+y[x]==x^2*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{12} \left (x^3+3 (-1+4 c_4) x+12 c_3\right ) \sin (x)+\left (-\frac {x^4}{48}+\frac {3 x^2}{16}+c_2 x-\frac {5}{32}+c_1\right ) \cos (x) \]
Sympy. Time used: 0.276 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*cos(x) + y(x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + \frac {x^{2}}{12}\right )\right ) \sin {\left (x \right )} + \left (C_{3} + x \left (C_{4} - \frac {x^{3}}{48} + \frac {3 x}{16}\right )\right ) \cos {\left (x \right )} \]