83.10.1 problem 1

Internal problem ID [19093]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Exercise III (B) at page 32
Problem number : 1
Date solved : Monday, March 31, 2025 at 06:48:21 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)-5*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-3 x}+{\mathrm e}^{x} \left (c_3 x +c_2 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 25
ode=D[y[x],{x,3}]+D[y[x],{x,2}]-5*D[y[x],x]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-3 x}+e^x (c_3 x+c_2) \]
Sympy. Time used: 0.183 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) - 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- 3 x} + \left (C_{1} + C_{2} x\right ) e^{x} \]