83.8.4 problem 4

Internal problem ID [19059]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Misc examples on chapter II at page 25
Problem number : 4
Date solved : Monday, March 31, 2025 at 06:42:21 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \end{align*}

Maple. Time used: 0.015 (sec). Leaf size: 24
ode:=(x+y(x))^2*diff(y(x),x) = a^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = a \operatorname {RootOf}\left (\tan \left (\textit {\_Z} \right ) a -\textit {\_Z} a +c_1 -x \right )-c_1 \]
Mathematica. Time used: 0.104 (sec). Leaf size: 21
ode=(x+y[x])^2*D[y[x],x]==a^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [y(x)-a \arctan \left (\frac {y(x)+x}{a}\right )=c_1,y(x)\right ] \]
Sympy. Time used: 9.324 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**2 + (x + y(x))**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} + \frac {a \left (i \log {\left (- i a - x - y{\left (x \right )} \right )} - i \log {\left (i a - x - y{\left (x \right )} \right )}\right )}{2} - y{\left (x \right )} = 0 \]