83.2.6 problem 6

Internal problem ID [18981]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (A) at page 8
Problem number : 6
Date solved : Monday, March 31, 2025 at 06:28:09 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.036 (sec). Leaf size: 119
ode:=x^3+3*x*y(x)^2+(y(x)^3+3*x^2*y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ y &= \frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-3 c_1 \,x^{2}-\sqrt {8 c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ y &= -\frac {\sqrt {-3 c_1 \,x^{2}+\sqrt {8 c_1^{2} x^{4}+1}}}{\sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 8.244 (sec). Leaf size: 245
ode=(x^3+3*x*y[x]^2)+(y[x]^3+3*x^2*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to \sqrt {-3 x^2-\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to -\sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to \sqrt {-3 x^2+\sqrt {8 x^4+e^{4 c_1}}} \\ y(x)\to -\sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to \sqrt {-2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to -\sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ y(x)\to \sqrt {2 \sqrt {2} \sqrt {x^4}-3 x^2} \\ \end{align*}
Sympy. Time used: 4.073 (sec). Leaf size: 88
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 + 3*x*y(x)**2 + (3*x**2*y(x) + y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} - \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = - \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}, \ y{\left (x \right )} = \sqrt {- 3 x^{2} + \sqrt {C_{1} + 8 x^{4}}}\right ] \]