Internal
problem
ID
[18967]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
XI.
Ordinary
differential
equations
with
more
than
two
variables.
problems
at
page
129
Problem
number
:
Ex.
3
Date
solved
:
Monday, March 31, 2025 at 06:26:51 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+2*x(t)-3*y(t) = t, diff(y(t),t)-3*x(t)+2*y(t) = exp(2*t)]; dsolve(ode);
ode={D[x[t],t]+2*x[t]-3*y[t]==t,D[y[t],t]-3*x[t]+2*y[t]==Exp[2*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-t + 2*x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) + 2*y(t) - exp(2*t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)