Internal
problem
ID
[18946]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IX.
Equations
of
the
second
order.
problems
at
end
of
chapter
at
page
120
Problem
number
:
Ex.
1
Date
solved
:
Monday, March 31, 2025 at 06:26:16 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)/x = n^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2/x*D[y[x],x]==n^2*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(-n**2*y(x) + Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)