82.53.2 problem Ex. 2

Internal problem ID [18943]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IX. Equations of the second order. problems at page 118
Problem number : Ex. 2
Date solved : Monday, March 31, 2025 at 06:26:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2}&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+cot(x)*diff(y(x),x)+4*y(x)*csc(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (\csc \left (x \right )+\cot \left (x \right )\right )^{-2 i}+c_2 \left (\csc \left (x \right )+\cot \left (x \right )\right )^{2 i} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 25
ode=D[y[x],{x,2}]+Cot[x]*D[y[x],x]+4*y[x]*Csc[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (2 \text {arctanh}(\cos (x)))-c_2 \sin (2 \text {arctanh}(\cos (x))) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x)/sin(x)**2 + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/tan(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE 4*y(x)*tan(x)/sin(x)**2 + tan(x)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) cannot be solved by the factorable group method