Internal
problem
ID
[18941]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IX.
Equations
of
the
second
order.
problems
at
page
116
Problem
number
:
Ex.
4
Date
solved
:
Monday, March 31, 2025 at 06:26:06 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*(x^2+x)*diff(y(x),x)+(x^2+2*x+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*(x^2+x)*D[y[x],x]+(x^2+2*x+2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - (2*x**2 + 2*x)*Derivative(y(x), x) + (x**2 + 2*x + 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False