Internal
problem
ID
[963]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.2,
Matrices
and
Linear
systems.
Page
384
Problem
number
:
problem
13
Date
solved
:
Saturday, March 29, 2025 at 10:35:28 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 6*x__1(t), diff(x__2(t),t) = -3*x__1(t)-x__2(t)]; dsolve(ode);
ode={D[ x1[t],t]==4*x1[t]+2*x2[t],D[ x2[t],t]==-3*x1[t]-x2[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-6*x__1(t) + Derivative(x__1(t), t),0),Eq(3*x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)