82.48.15 problem Ex. 15

Internal problem ID [18925]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. End of chapter problems at page 107
Problem number : Ex. 15
Date solved : Monday, March 31, 2025 at 06:25:08 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x}}{2}-{\mathrm e}^{-x} c_1 +c_2 \]
Mathematica. Time used: 0.048 (sec). Leaf size: 24
ode=D[y[x],{x,2}]+D[y[x],x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^x}{2}+c_1 \left (-e^{-x}\right )+c_2 \]
Sympy. Time used: 0.141 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + \frac {e^{x}}{2} \]