82.48.12 problem Ex. 12

Internal problem ID [18922]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. End of chapter problems at page 107
Problem number : Ex. 12
Date solved : Monday, March 31, 2025 at 06:25:04 PM
CAS classification : [[_2nd_order, _quadrature]]

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x) = a/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \ln \left (x \right ) a x +\left (-a +c_1 \right ) x +c_2 \]
Mathematica. Time used: 0.003 (sec). Leaf size: 21
ode=D[y[x],{x,2}]==a/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -a x+a x \log (x)+c_2 x+c_1 \]
Sympy. Time used: 0.150 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a/x + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + a x \log {\left (x \right )} \]