82.44.1 problem Ex. 1

Internal problem ID [18894]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. Exact differential equations, and equations of particular forms. Integration in series. problems at page 99
Problem number : Ex. 1
Date solved : Monday, March 31, 2025 at 06:21:03 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }-a {y^{\prime }}^{2}&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-a*diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\ln \left (-a \left (c_1 x +c_2 \right )\right )}{a} \]
Mathematica. Time used: 0.217 (sec). Leaf size: 20
ode=D[y[x],{x,2}]-a*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\frac {\log (a x+c_1)}{a} \]
Sympy. Time used: 0.538 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \frac {\log {\left (C_{2} + a x \right )}}{a} \]