82.43.1 problem Ex. 1

Internal problem ID [18890]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. Exact differential equations, and equations of particular forms. Integration in series. problems at page 98
Problem number : Ex. 1
Date solved : Monday, March 31, 2025 at 06:20:54 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime }&=4 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=x^2*diff(diff(diff(y(x),x),x),x)-4*x*diff(diff(y(x),x),x)+6*diff(y(x),x) = 4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{4} c_1 \,x^{4}+\frac {1}{3} c_2 \,x^{3}+\frac {2}{3} x +c_3 \]
Mathematica. Time used: 0.012 (sec). Leaf size: 31
ode=x^2*D[y[x],{x,3}]-4*x*D[y[x],{x,2}]+6*D[y[x],x]==4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 x^4}{4}+\frac {c_1 x^3}{3}+\frac {2 x}{3}+c_3 \]
Sympy. Time used: 0.320 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 3)) - 4*x*Derivative(y(x), (x, 2)) + 6*Derivative(y(x), x) - 4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{3} + C_{3} x^{4} + \frac {2 x}{3} \]