82.40.2 problem Ex. 2

Internal problem ID [18877]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. Exact differential equations, and equations of particular forms. Integration in series. problems at page 94
Problem number : Ex. 2
Date solved : Monday, March 31, 2025 at 06:17:56 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y&=x^{4}+2 x -5 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 111
ode:=x^5*diff(diff(y(x),x),x)+3*x^3*diff(y(x),x)+(3-6*x)*x^2*y(x) = x^4+2*x-5; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-48 \,\operatorname {Ei}_{1}\left (\frac {3}{x}\right ) x^{5} {\mathrm e}^{\frac {3}{x}}+243 x^{5} {\mathrm e}^{\frac {3}{x}} c_1 +\left (48 x^{5}+144 x^{4}+216 x^{3}+216 x^{2}+162 x \right ) \ln \left (x \right )+405+\left (1944 c_2 +109\right ) x^{5}+\left (5832 c_2 +471\right ) x^{4}+\left (8748 c_2 +774\right ) x^{3}+\left (8748 c_2 +846\right ) x^{2}+\left (6561 c_2 +675\right ) x}{243 x^{2}} \]
Mathematica
ode=x^5*D[y[x],{x,2}]+3*x^2*D[y[x],x]+(3-6*x)*x^2*y[x]==x^4+2*x-5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**5*Derivative(y(x), (x, 2)) - x**4 + 3*x**3*Derivative(y(x), x) + x**2*(3 - 6*x)*y(x) - 2*x + 5,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3*(-x**2*Derivative(y(x), (x, 2)) + x + 6*y(x)) - 3*x**2*y(x) + 2*x - 5)/(3*x**3) cannot be solved by the factorable group method