Internal
problem
ID
[18875]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
End
of
chapter
problems
at
page
91
Problem
number
:
Ex.
14
Date
solved
:
Monday, March 31, 2025 at 06:17:48 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+y(x) = (ln(x)*sin(ln(x))+1)/x; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+y[x]==(Log[x]*Sin[Log[x]]+1)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + y(x) - (log(x)*sin(log(x)) + 1)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)