Internal
problem
ID
[18872]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
End
of
chapter
problems
at
page
91
Problem
number
:
Ex.
11
Date
solved
:
Monday, March 31, 2025 at 06:17:41 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(y(x),x),x),x)+2*x^3*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+x*y(x) = 1; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,3}]+2*x^3*D[y[x],{x,2}]-x^2*D[y[x],x]+x*y[x]==1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 3)) + 2*x**3*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), x) + x*y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)