Internal
problem
ID
[18870]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
End
of
chapter
problems
at
page
91
Problem
number
:
Ex.
9
Date
solved
:
Monday, March 31, 2025 at 06:17:37 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = x^m; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*y[x]==x^m; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) - x**m + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)