82.28.3 problem Ex. 4

Internal problem ID [18811]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VI. Linear equations with constant coefficients. problems at page 75
Problem number : Ex. 4
Date solved : Monday, March 31, 2025 at 06:15:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=3 \,{\mathrm e}^{\frac {5 x}{2}} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 3*exp(5/2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_2 +c_1 x +\frac {4 \,{\mathrm e}^{\frac {3 x}{2}}}{3}\right ) {\mathrm e}^{x} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 28
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==3*Exp[5/2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {4}{3} e^{5 x/2}+e^x (c_2 x+c_1) \]
Sympy. Time used: 0.173 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 3*exp(5*x/2) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{x} + \frac {4 e^{\frac {5 x}{2}}}{3} \]