Internal
problem
ID
[18788]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
IV.
Singular
solutions.
problems
on
chapter
IV.
page
49
Problem
number
:
Ex.
3
Date
solved
:
Monday, March 31, 2025 at 06:14:37 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=y(x)^2-2*x*y(x)*diff(y(x),x)+(x^2-1)*diff(y(x),x)^2 = m^2; dsolve(ode,y(x), singsol=all);
ode=y[x]^2-2*D[y[x],x]*x*y[x]+D[y[x],x]^2*(x^2-1)==m^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") m = symbols("m") y = Function("y") ode = Eq(-m**2 - 2*x*y(x)*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), x)**2 + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out