82.21.1 problem Ex. 1

Internal problem ID [18783]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems at page 47
Problem number : Ex. 1
Date solved : Monday, March 31, 2025 at 06:14:27 PM
CAS classification : [_quadrature]

\begin{align*} x {y^{\prime }}^{2}-\left (x -a \right )^{2}&=0 \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 35
ode:=x*diff(y(x),x)^2-(x-a)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2 \sqrt {x}\, \left (-x +3 a \right )}{3}+c_1 \\ y &= -\frac {2 \sqrt {x}\, \left (-x +3 a \right )}{3}+c_1 \\ \end{align*}
Mathematica. Time used: 0.023 (sec). Leaf size: 43
ode=x*D[y[x],x]^2-(x-a)^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2}{3} \sqrt {x} (x-3 a)+c_1 \\ y(x)\to \frac {2}{3} \sqrt {x} (x-3 a)+c_1 \\ \end{align*}
Sympy. Time used: 0.525 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 - (-a + x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - 2 a \sqrt {x} + \frac {2 x^{\frac {3}{2}}}{3}, \ y{\left (x \right )} = C_{1} + 2 a \sqrt {x} - \frac {2 x^{\frac {3}{2}}}{3}\right ] \]