82.18.18 problem Ex. 20

Internal problem ID [18769]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter III. Equations of the first order but not of the first degree. Examples on chapter III. page 38
Problem number : Ex. 20
Date solved : Monday, March 31, 2025 at 06:09:52 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} {y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2}&=0 \end{align*}

Maple. Time used: 0.084 (sec). Leaf size: 29
ode:=diff(y(x),x)^3-4*x*y(x)*diff(y(x),x)+8*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {4 x^{3}}{27} \\ y &= 0 \\ y &= \frac {\left (4 c_1 x -1\right )^{2}}{64 c_1^{3}} \\ \end{align*}
Mathematica
ode=D[y[x],x]^3-4*x*y[x]*D[y[x],x]+8*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*y(x)*Derivative(y(x), x) + 8*y(x)**2 + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out